Logarithmic regression is a type of regression used to model situations where growth or decay accelerates rapidly at first and then slows over time.
For example, the following plot demonstrates an example of logarithmic decay:
For this type of situation, the relationship between a predictor variable and a response variable could be modeled well using logarithmic regression.
The equation of a logarithmic regression model takes the following form:
y = a + b*ln(x)
where:
- y: The response variable
- x: The predictor variable
- a, b: The regression coefficients that describe the relationship between x and y
The following step-by-step example shows how to perform logarithmic regression in Google Sheets.
Step 1: Create the Data
First, let’s create some fake data for two variables: x and y:
Step 2: Take the Natural Log of the Predictor Variable
Next, we need to create a new column that represents the natural log of the predictor variable x:
Step 3: Fit the Logarithmic Regression Model
Next, we’ll fit the logarithmic regression model.
To do so, type the following formula into cell E2:
=LINEST(B2:B16, C2:C16)
Once you press Enter, the coefficients of the logarithmic regression model will be shown:
Using the coefficients from the output, we can see that the fitted logarithmic regression equation is:
y = 63.0686 – 20.1987 * ln(x)
We can use this equation to predict the response variable, y, based on the value of the predictor variable, x.
For example, if x = 12, then we would predict that y would be 12.87:
y = 63.0686 – 20.1987 * ln(12) = 12.87
Bonus: Feel free to use this online Logarithmic Regression Calculator to automatically compute the logarithmic regression equation for a given predictor and response variable.
Additional Resources
The following tutorials explain how to perform other common tasks in Google Sheets:
How to Perform Linear Regression in Google Sheets
How to Perform Polynomial Regression in Google Sheets
How to Create a Residual Plot in Google Sheets