You can use the following syntax to convert a pandas pivot table to a pandas DataFrame:
df = pivot_name.reset_index()
The following example shows how to use this syntax in practice.
Example: Convert Pivot Table to DataFrame
Suppose we have the following pandas DataFrame:
import pandas as pd #create DataFrame df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'], 'position': ['G', 'G', 'F', 'F', 'G', 'G', 'F', 'F'], 'points': [11, 8, 10, 6, 6, 5, 9, 12]}) #view DataFrame df team position points 0 A G 11 1 A G 8 2 A F 10 3 A F 6 4 B G 6 5 B G 5 6 B F 9 7 B F 12
We can use the following code to create a pivot table that displays the mean points scored by team and position:
#create pivot table
df_pivot = pd.pivot_table(df, values='points', index='team', columns='position')
#view pivot table
df_pivot
position F G
team
A 8.0 9.5
B 10.5 5.5
We can then use the reset_index() function to convert this pivot table to a pandas DataFrame:
#convert pivot table to DataFrame
df2 = df_pivot.reset_index()
#view DataFrame
df2
team F G
0 A 8.0 9.5
1 B 10.5 5.5
The result is a pandas DataFrame with two rows and three columns.
We can also use the following syntax to rename the columns of the DataFrame:
#convert pivot table to DataFrame
df2.columns = ['team', 'Forward_Pts', 'Guard_Pts']
#view updated DataFrame
df2
team Forward_Pts Guard_Pts
0 A 8.0 9.5
1 B 10.5 5.5
Additional Resources
The following tutorials explain how to perform other common operations in pandas:
Pandas: How to Reshape DataFrame from Long to Wide
Pandas: How to Reshape DataFrame from Wide to Long
Pandas: How to Group and Aggregate by Multiple Columns