Home » How to Add a Numpy Array to a Pandas DataFrame

How to Add a Numpy Array to a Pandas DataFrame

by Erma Khan

Occasionally you may want to add a NumPy array as a new column to a pandas DataFrame.

Fortunately you can easily do this using the following syntax:

df['new_column'] = array_name.tolist()

This tutorial shows a couple examples of how to use this syntax in practice.

Example 1: Add NumPy Array as New Column in DataFrame

The following code shows how to create a pandas DataFrame to hold some stats for basketball players and append a NumPy array as a new column titled ‘blocks’:

import numpy as np
import pandas as pd

#create pandas DataFrame
df = pd.DataFrame({'points': [25, 12, 15, 14, 19, 23, 25, 29],
                   'assists': [5, 7, 7, 9, 12, 9, 9, 4],
                   'rebounds': [11, 8, 10, 6, 6, 5, 9, 12]})

#create NumPy array for 'blocks'
blocks = np.array([2, 3, 1, 0, 2, 7, 8, 2])

#add 'blocks' array as new column in DataFrame
df['blocks'] = blocks.tolist()

#display the DataFrame
print(df)

   points  assists  rebounds  blocks
0      25        5        11       2
1      12        7         8       3
2      15        7        10       1
3      14        9         6       0
4      19       12         6       2
5      23        9         5       7
6      25        9         9       8
7      29        4        12       2

Note that the new DataFrame now has an extra column titled blocks.

Example 2: Add NumPy Matrix as New Columns in DataFrame

The following code shows how to create a pandas DataFrame to hold some stats for basketball players and append a NumPy array as a new column titled ‘blocks’:

import numpy as np
import pandas as pd

#create pandas DataFrame
df = pd.DataFrame({'points': [25, 12, 15, 14, 19, 23

#create NumPy matrix
mat = np.matrix([[2, 3],
                 [1, 0],
                 [2, 7],
                 [8, 2],
                 [3, 4],
                 [7, 7],
                 [7, 5],
                 [6, 3]])

#add NumPy matrix as new columns in DataFrame
df_new = pd.concat([df, pd.DataFrame(mat)], axis=1)

#display new DataFrame
print(df_new)

   points  assists  rebounds  0  1
0      25        5        11  2  3
1      12        7         8  1  0
2      15        7        10  2  7
3      14        9         6  8  2
4      19       12         6  3  4
5      23        9         5  7  7
6      25        9         9  7  5
7      29        4        12  6  3

Note that the names of the columns for the matrix that we added to the DataFrame are given default column names of 0 and 1.

We can easily rename these columns using the df.columns function:

#rename columns
df_new.columns = ['pts', 'ast', 'rebs', 'new1', 'new2']

#display DataFrame
print(df_new)

   pts  ast  rebs  new1  new2
0   25    5    11     2     3
1   12    7     8     1     0
2   15    7    10     2     7
3   14    9     6     8     2
4   19   12     6     3     4
5   23    9     5     7     7
6   25    9     9     7     5
7   29    4    12     6     3

Additional Resources

How to Stack Multiple Pandas DataFrames
How to Merge Two Pandas DataFrames on Index
How to Convert Pandas DataFrame to NumPy Array
How to Rename Columns in Pandas

Related Posts